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Abstract—As one of the most devastating types of Distributed
Denial of Service (DDoS) attacks, Domain Name System (DNS)
amplification attack represents a big threat and one of the
main Internet security problems to nowadays networks. Many
protocols that form the Internet infrastructure expose a set of
vulnerabilities that can be exploited by attackers to carry out a
set of attacks. DNS, one of the most critical elements of the
Internet, is among these protocols. It is vulnerable to DDoS
attacks mainly because all exchanges in this protocol use User
Datagram Protocol (UDP). These attacks are difficult to defeat
because attackers spoof the IP address of the victim and flood him
with valid DNS responses coming from legitimate DNS servers.
In this paper, we propose an efficient and scalable solution, called
WisdomSDN, to effectively mitigate DNS amplification attack in
the context of software defined networks (SDN). WisdomSDN
covers both detection and mitigation of illegitimate DNS requests
and responses. WisdomSDN consists of: (1) a novel proactive and
stateful scheme (PAS) to perform one-to-one mapping between
DNS requests and DNS responses; it operates proactively by
sending only legitimate responses, excluding amplified illegitimate
DNS responses; (2) a machine learning DDoS detection module
to detect, in real-time, illegitimate DNS requests. This module
consists of (a) Flow statistics collection scheme (FSC) to gather
the features of flows in an efficient and scalable way using
sFlow protocol; (b) Entropy calculation scheme (ECS) to measure
randomness of network traffic; and (c) Bayes Network based
Filtering scheme (BNF) to classify, based on entropy values, ille-
gitimate DNS requests; and (3) DNS Mitigation scheme (DM) to
effectively mitigate illegitimate DNS requests. The experimental
results show that, compared to state-of-art, WisdomSDN can
effectively detect/mitigate DNS amplification attack quickly with
high detection rate, less false positive rate, and low overhead
making it a promising solution to mitigate DNS amplification
attack in a SDN environment.

Index Terms—DDoS; SDN; Entropy; Bayes Classifier.

I. INTRODUCTION

A. Overview

DNS amplification attack is a popular form of DDoS
attacks that relies on the use of Open Resolver (publically

accessible DNS servers) to overwhelm the victim (i.e., target
of DNS amplification attack) with amplified DNS traffic.
This attack is based on a recursive function of DNS servers.
Usually, the DNS server accepts and responds to resolution
requests from anyone without verifying its identity. Thus,
attackers can exploit recursive functions to amplify the attack
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by spoofing the victim’s IP address. The spoofed queries (i.e.,
DNS requests) sent by the attacker are of type ANY ; they
include all known information about a DNS zone in a single
request. The amplification impact of this attack comes from the
fact that small queries can generate massive amounts of UDP
packets in response. This category of attack can be divided
in two types: (a) amplification with repeated DNS requests
that have the same content; and (b) amplification with varied
DNS requests that have different contents. The query can be
of type ANY that requests all records for a particular domain
or different domains. The size of the response may be large to
produce a high level of amplification. The amplification ratio,
of a factor up to 4670 [1], is calculated as the ratio between
the response size and the request size. According to a recent
study, there are about 7.5 million external DNS servers in the
Internet; more than 75% of these servers allow recursive name
service to the public [2]. This can cause significant collateral
damage on the victim, if attackers use many recursive servers
to amplify and generate the attack. As example, on the 2nd

of October 2016, a huge attack was conducted against the
servers of Dyn, a company that controls many Internets DNS
servers. As a consequence, many popular Internet services,
e.g., Amazon, Twitter, GitHub [3], PayPal and others became
unavailable for several hours [4]. This attack [4] is considered
as the largest ever DDoS attack, exceeding a rate of 1 Tbit/s.
Such incidents harm Internet service providers (ISPs) and cost
millions of dollars of lost revenues for enterprises.

B. Description of DNS amplification attack

DNS amplification attack consists of: (1) an attacker (e.g.,
bot master); (2) a large number of compromised devices
(called zombies); and (3) reflectors (i.e., Open Resolvers).
Each zombie is ordered by the bot master to send a large
number of DNS requests, in which the source IP address is
replaced with the victim’s IP address (i.e., spoofed), to Open
Resolvers. Upon receipt of these illegitimate DNS requests,
Open Resolvers make a recursive resolution and flood the
victim with large number of amplified DNS responses (see
Fig. 1).

In this paper, we propose an efficient, stateful, proactive and
scalable solution in the context of SDN, called WisdomSDN.
Recently, SDN has attracted tremendous attention from indus-
try and academia as an emerging networking paradigm that
facilitates network management and provides new approaches
to manage and deploy networks dynamically [5]–[9]. SDN
separates data and control planes; this separation allows for
more control over the network and brings a new way to deal
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Fig. 1: DNS amplification attack.

with various forms of DDoS attacks [10]–[16]. While SDN
can protect the network from DDoS attacks [17]–[22], it can
be a victim of these attacks [23]. To address this problem,
WisdomSDN promises to leverage the advantages of SDN
to protect the victim from DNS amplification attack while
maintaining the SDN secure i.e., protecting the resources
of data plane (i.e., Ternary Content Addressable Memory
(TCAM) of OF (OpenFlow) switches), the resources of control
plane (i.e., the SDN controller resources) and the workload of
OF channel. To this aim, WisdomSDN makes use of a novel
proactive and stateful mapping scheme (PAS), based on in-
OF switch (e.g., OpenvSwitch [24]) processing capabilities, to
mitigate DNS amplification attack and protect SDN controller.
PAS adopts a proactive and stateful paradigm to perform one-
to-one mapping between DNS requests and DNS responses;
this can effectively offload the SDN controller resources and
the OF channel. Each OF switch filters DNS traffic according
to the header fields (i.e., MAC address, IP address and UDP
port). PAS checks the legitimacy of each DNS response by
comparing its MAC address, IP address and UDP Port with
the corresponding DNS request and drops automatically ille-
gitimate DNS responses. Thus, PAS allows: (1) OF switches
to be smart enough to react proactively and quickly to mitigate
illegitimate DNS responses, and not wait for a reactive rule
from the SDN controller; and (2) to effectively offload the
control plane (i.e., SDN controller). However, if each OF
switch maintains the one-to-one mapping of all DNS requests
that it receives it will be overwhelmed. To address this issue
and protect TCAM of OF switches that is limited in size,
WisdomSDN makes use of a robust machine learning DDoS
detection module that aims to detect, in real-time, illegitimate
DNS requests. This module consists of: (1) FSC, to gather the
features of flows in an efficient and scalable way using sFlow
protocol; (2) ECS, to measure the disorder/randomness of net-
work traffic; and (3) BNF, to automatically detect illegitimate
DNS requests. To evaluate the effectiveness of WisdomSDN,
we conducted a set of experiments in Mininet [25]. We launch
the attack on a simulated SDN network environment in the
context of 2 scenarios: (1) without WisdomSDN; and (2) with
WisdomSDN. The results show that without WisdomSDN,
the SDN controller and victim are flooded with illegitimate
DNS traffic (DNS requests and DNS responses). However,
with WisdomSDN, OF switches can effectively detect and
mitigate illegitimate DNS requests and DNS responses. Also,
we evaluated BNF through Receiver Operating Characteristic

(ROC) curves and we compared it to the most prominent state-
of-art schemes. The results show that BNF can effectively
detect the attack with high detection rate and low false positive
rate. To the best of our knowledge, WisdomSDN is the first
contribution that mitigates this attack considering all possible
attacks setup while maintaining the SDN secure.

The main contributions of this paper can be summarized as
follows:
• We propose a novel proactive and stateful scheme (PAS)

to perform one-to-one mapping between DNS requests
and DNS responses.

• We propose a flow statistics collection scheme (FSC) to
gather the features of flows in an efficient way using
sFlow protocol.

• We introduce an entropy calculation scheme (ECS) to
measure the disorder/randomness of network traffic.

• We propose a Network based Filtering scheme (BNF)
to classify, based on entropy values, illegitimate DNS
requests.

• We propose a DNS Mitigation scheme (DM) to effec-
tively mitigate illegitimate DNS requests.

• We evaluate the performance of WisdomSDN in terms of
scalability, effectiveness and efficiency. The experiments
results show that WisdomSDN can effectively mitigate
DNS amplification attack with high detection rate, low
false positive rate and minor overhead.

The rest of this paper is organized as follows. Section
II presents related works. Section III presents an overview
of WisdomSDN. Section IV introduces our system design.
Section V presents PAS, our proactive and stateful scheme.
Section VI presents our machine learning DDoS detection
module that consists of: FSC, ECS, and BNF. Section VII
describes DM. Section VIII evaluates WisdomSDN in terms
of efficiency, scalability, detection rate and presents the sim-
ulation results. Finally, section IX concludes the paper and
presents our future works.

II. RELATED WORKS

Several schemes have been proposed in the literature to
mitigate DNS amplification attack. In the following: (1) we
classify countermeasures into two groups; and (2) for each
group, we present some of the most prominent works as well
as their limitations.

A. Countermeasures in Legacy Networks

In [26], Huistra proposed a scheme to detect malicious DNS
traffic by detecting all IP addresses that cause the attack, based
on collected dataset from NetFlow. The scheme consists of
two phases: (1) detection of suspicious IP addresses based
on the quantity of requests generated by this IP address and
stored in the flow-record; and (2) detection of any IP address
that receives suspicious DNS responses based on the huge
amount of received responses. However, the execution of the
two phases, in this scheme [26], result in large response times.
In [27], Rozekrans et al. proposed a defense mechanism, called
response rate limiting (RRL), to limit the amount of generated
responses by dropping the ones that exceed a predefined
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threshold. This is performed by storing the requestor IP
address when DNS server generates a response for a DNS
request. When the number of responses exceeds the threshold,
the server drops requests for this IP address. However, RRL
only examines DNS responses and ignores the amount of
incoming DNS requests. In [28], Sun et al. proposed a low-
cost hardware based scheme to mitigate DNS amplification
attack. The solution works well except that it is hardware-
based, which makes it hard to update and extend. In [29],
Guo et al. proposed a scheme that deploys filters at the border
of networks in order to block incoming source IP addresses
that are not belong to their networks. However, this scheme
has "neighborhood policy" that requires all ISPs to participate
in order to provide the complete list of IP addresses that
do not sent from the network; moreover, the effectiveness
of this scheme depends on its global deployment across the
Internet. In [30], Kambourakis et al. proposed a scheme that
stores all incoming DNS requests and DNS responses. Once an
illegitimate DNS response is detected, a counter is incremented
until it reaches a threshold. When the threshold is reached, an
alert is generated and the attack is assumed to have happened.
This scheme does not scale for large scale networks because
it needs to store all DNS requests and responses.

B. SDN-Based Countermeasures

Our previous works [31], [32] did show their effectiveness
in protecting permissioned blockchain from DNS amplification
attack. In this paper, we extend these works to protect any
type of applications and not consider only blockchain applica-
tions. Moreover, we combine a proactive and stateful scheme
with a machine learning algorithm (i.e., BNF) in order to:
(1) distinguish between legitimate and illegitimate responses
and systematically eliminate the amplified illegitimate DNS
responses; (2) decrease false positive rate while maintaining a
high detection rate. In [33], Rodrigo et al. proposed a flow-
based intrusion detection scheme using OF protocol to gather
network traffic features. This scheme [33] focuses only on the
attack in data plane without any analysis of the overhead to
the control plane. Moreover, the performance analysis does not
include the overall system performance. In [34], Mehdi et al.
proposed an anomaly detection scheme in the context of SDN
using OF protocol. However, this scheme [34] was designed
only for small-scale setup; in large-scale environment, a high
rate traffic from data plane to control plane may overload
the SDN controller. In [35], Wang et al. proposed an entropy
scheme based on OF switches; it focuses only on detection,
but it cannot find the victim or the illegitimate hosts. In [36],
Lim et al. proposed a DDoS attacks mitigation scheme for
botnet-based attacks that runs on SDN controller. This scheme
[36] requires a large amount of communications between the
SDN controller and OF switches in order to protect the victim;
moreover, it not only generates DDoS attacks against the
SDN controller but also requires high latency to cooperate
with the SDN controller. In [37], Zaalouk et al. proposed a
scheme based on SDN to mitigate DNS amplification attack;
it uses sFlow protocol to monitor DNS traffic. When the
attack is detected, the orchestrator commands one of the SDN

controllers to forward suspicious traffic to it in order to analyze
the size of DNS response packets and to compute their average
size. If the average of responses size exceeds the value of a
threshold, it proceeds to the second phase of detection. In this
phase, the orchestrator calculates the entropy of destination IP
address. If the entropy value is low, then it is assumed that
there is a DNS amplification attack. In this case, it applies a
set of rules to limit the responses rate. However, this scheme
[37] does not distinguish between legitimate and illegitimate
responses since all DNS responses are sent to SDN controller
and may cause DDoS attack against control plane as well as
orchestrator. In [38], K. Giotis et al. proposed the use of sFlow
protocol with OF protocol in order to detect DDoS attacks
reducing the communication overhead between data plane and
control plane. This scheme [38] works well; however, it has
high false positive rate.

To address the weaknesses of these existing schemes [26]–
[38], we propose WisdomSDN, an efficient, stateful, proactive,
and scalable solution to detect and mitigate DNS amplifi-
cation attack. In WisdomSDN, we use: (1) PAS, to exclude
the amplified DNS responses; (2) a machine learning DDoS
detection module, to detect, in real-time, illegitimate DNS
requests; and (3) DM, to effectively mitigate illegitimate DNS
requests. WisdomSDN uses FSC to separate flow monitoring
from the forwarding logic; this makes it much more scalable
compared to existing native OF schemes [33]–[36]. Using
BNF, WisdomSDN is much accurate in comparison with the
ones using sampling technology [31], [37], [38].

III. WISDOMSDN: AN OVERVIEW

In this section, we present an overview of WisdomSDN.
More specifically, we explain how WisdomSDN can combine
detection and mitigation of DNS amplification attack, allowing
for a robust detection and an effective mitigation of this attack.

The majority of DNS requests use UDP as a transport
protocol without providing any mechanism to verify the source
IP address of DNS requests. Therefore, the network can be
flooded with illegitimate DNS requests and amplified DNS
responses. WisdomSDN is inspired from the techniques of
Moving Target Defense [39]. These techniques allow to con-
tain the attack in the space of the real source of the request
and avoid propagating DDoS attacks to the potential victim.

Fig. 2 shows the flow diagram of WisdomSDN. When an OF
switch receives a new packet, it first checks the type of incom-
ing packet. If the packet is DNS request; then, WisdomSDN
checks whether the maximum number of requests threshold
per ingress port is reached. If the response is yes, it triggers,
using sFlow protocol, an event to sFlow collector (i.e., sFlow-
RT [40]) in order to collect network traffic features using
FSC. Afterwards, ECS extracts network traffic features from
collected information and calculates entropy values. Based on
this calculation, BNF detects automatically illegitimate flows
(see Section VI). If the flow is classified as illegitimate, then a
mitigation action is performed using DM scheme. Otherwise,
OF switch: (1) learns the authorized response from ingress
port of incoming DNS request; and (2) installs the rule that
allows only the DNS response that matches the corresponding
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Fig. 2: Flow diagram of WisdomSDN.

DNS request with a short timeout (i.e., idle timeout and hard
timeout) in order to avoid the storage complexity to maintain
the one-to-one mapping. Thus, any amplified illegitimate DNS
response will not be sent to neither the victim nor the SDN
controller; this excludes amplified illegitimate DNS responses
and offload the SDN controller and the OF channel. Upon
receipt of DNS response, OF switch checks whether there is
any corresponding DNS request; if it is the case, it forwards
the DNS response following the ingress port of incoming DNS
request; otherwise, it drops the DNS response.

IV. SYSTEM DESIGN

A. Design Overview

When designing WisdomSDN, we did consider the follow-
ing objectives. First, WisdomSDN should give a full protection
from DNS amplification attack. Unlike existing schemes [26]–
[38] that try to analyze the network state; then, detect the at-
tack. WisdomSDN aims to act proactively, by maintaining one-
to-one mapping between DNS requests and DNS responses, in
order to avoid sending illegitimate DNS traffic to victim (i.e.,
target of the attack); this is ensured via PAS. To protect TCAM
of OF switches which is limited in size, WisdomSDN makes
use of a robust machine learning DDoS detection module that
aims to detect, in real-time, illegitimate DNS requests. Finally,
the attack should be effectively mitigated, using DM, and the
whole system has to be as scalable as possible.

B. System Architecture

Fig. 3 shows the architecture of WisdomSDN. WisdomSDN
has three phases: (1) PAS, a novel proactive and stateful
scheme to perform one-to-one mapping between DNS requests
and DNS responses; it operates proactively by sending only

Fig. 3: System Architecture.

legitimate responses, excluding amplified illegitimate DNS
responses. PAS is implemented in data plane (i.e., OF switch);
(2) a machine learning DDoS detection module that aims
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to detect, in real-time, illegitimate DNS requests. This mod-
ule is implemented on the top of the SDN controller (i.e.,
application plane) and consists of (a) FSC, a novel Flow
statistics collection scheme to monitor, using sFlow protocol,
network traffic features in an efficient and scalable way; it
defines the monitoring metrics (e.g., the attributes of flows
aggregation and thresholds); (b) ECS, an entropy calculation
scheme to measure disorder/randomness of network traffic;
and (c) BNF, a real-time detection scheme, to classify, based
on entropy values, illegitimate DNS requests; (3) DM, a DNS
mitigation scheme to effectively mitigate illegitimate DNS
requests enabling the network to recover quickly in short time.
DM installs new OF rules into OF switches under attack
in order to monitor the speed of illegitimate DNS requests.
WisdomSDN separates flow monitoring from the forwarding
logic; this makes it much scalable and more efficient than
OF native schemes. The REST API [41] is used in the
process of detection/mitigation to offer the interoperability in
order to manage any SDN controller (e.g., OpenDaylight [42],
Floodlight [43]).

V. PROACTIVE AND STATEFUL SCHEME (PAS)

PAS is a novel proactive and stateful scheme that is in-
spired by the techniques of one-to-one mapping between DNS
requests and DNS responses [28]. First, the SDN controller
pushes the OF rules (see Algorithm 1) to OF switches in
order to process proactively all DNS traffic (i.e., DNS requests
and DNS responses). In PAS, a DNS response is considered
as legitimate if it has the same reversed fields’ values (i.e.,
MAC addresses, IP addresses, and UDP ports) of a pre-sent
DNS request; otherwise, this DNS response will be considered
as illegitimate and systematically eliminated. This allows OF
switches to be smart enough to react quickly, to avoid any
attempt of external DNS amplification attack that aims to flood
the victim’s network with amplified DNS traffic, and not wait
for a reactive rule from the SDN controller. However, when
an attacker is within the victim’s network (see Figs. 4(c), and
4(d)), he can easily spoof the source IP address of the victim
in order to direct the amplified DNS responses to that victim.
To alleviate this issue, each DNS response received, by each
OF switch, is forwarded to the original port (i.e., ingress port)
from which the corresponding DNS request came. Then, if
the attacker spoofed the source IP address in the prior DNS
request, he will receive the returned amplified DNS traffic (see
Figs. 5(b), 5(c), and 5(d)). Otherwise, legitimate sources will
receive legitimate DNS responses. Thus, PAS totally ensures
the protection of the victim from any external or internal DNS
amplification attack. PAS uses short timeout (i.e., idle timeout
and hard timeout) in order to avoid the storage complexity to
maintain the one-to-one mapping. Algorithm 1 illustrates steps
executed by each OF switch upon receipt of a packet. Fig.
5(a) shows that with WisdomSDN and since there is no DNS
request that is sent from a host in the network, the default rule
(Proto=UDP, port_src=53, prior=0, action=DROP) is triggered
in order to drop illegitimate DNS responses; unlike without
WisdomSDN, where the victim is flooded with illegitimate
amplified DNS responses (see Fig. 4(a)). Figs. 5(b), 5(c) and

5(d) show that PAS traces the real path of the DNS requests
provenance, using Ingres Port in the OF switch, and sends the
corresponding responses using the same path as the requests.
Thus, the attacker will receive the returned amplified DNS
responses, and the victim will not receive any illegitimate
DNS traffic; unlike without WisdomSDN, where the victim is
flooded with illegitimate amplified DNS responses (see Figs.
4(a), 4(b), 4(c) and 4(d)). To protect TCAM of OF switches,
which can be the target for attackers, from the huge amount
of DNS requests, we propose a machine learning DDoS
detection module that consists of FSC, ECS and BNF. In what
follows, we investigate how this module can effectively detect
illegitimate DNS requests.

Algorithm 1 (PAS): Proactive And Stateful Scheme
Input : DNS packet
Output: Action to carry out
for each DNS packet do

Check Type of packet DNS
if this.dns_packet.type==Request then

Expect_solution=new Packet()
Expect_solution.eth_src ←this.dns_packet.eth_dst
Expect_solution.eth_dst←this.dns_packet.eth_src
Expect_solution.ip_src←this.dns_packet.ip_dst
Expect_solution.ip_dst←this.dns_packet.ip_src
Expect_solution.udp_dst←this.dns_packet.udp_src
Install rule that allows only this Expect_solution
This.dns_packet::Forward_Routing_Policies()

else
if this.dns_packet.type==Response then

if Match(this.dns_packet)::In_Flow_Table then
This.dns_packet::Action(Output:IN_PORT)

else
This.dns_packet::ACTION(DROP)

end
else

return;
end

end
end

VI. MACHINE LEARNING DDOS DETECTION MODULE

This module aims to protect TCAM of OF switches while
maintaining the SDN secure; it consists of the following: (1)
FSC to gather network traffic features in an efficient and
scalable way using sFlow protocol; (2) ECS to extract network
traffic features; and (3) BNF to, based on ECS calculation,
detect network anomalies.

1) FSC: In SDN environment, two commonly approaches
are used to collect network traffic features (e.g., count number
of received packets). The first approach is based on OF
protocol while the second one is based on flow sampling (e.g.,
sFlow). In OF based approach, collection of network traffic
features can be initiated when the control plane (i.e., SDN
controller) sends a state request (ofp_flow_stats_request) to
data plane devices (i.e., OF switches); these latter respond



IEEE TRANSACTIONS ON NETWORKS AND SERVICE MANAGEMENT 6

(a) (b)

(c) (d)

Fig. 4: Different attacks setup without WisdomSDN.

(a) (b)

(c) (d)

Fig. 5: Different attacks setup with WisdomSDN.

with one or more reply messages (ofp_flow_stats_reply) by
sending network traffic features. To this aim, each OF switch
needs to maintain a large number of flow entries. However,
this can exhaust TCAM in OF switches. Moreover, a large
size of reply messages sent by OF switches to SDN controller
can exhaust the bandwidth between data plane and control
plane, congest the OF channel and generate a DDoS attack
on control plane. Thus, OF based approach is not efficient to
detect high rate attacks (i.e., DNS amplification attack).

To address the issues of OF based approach, we decided
to monitor DNS flows based on flow sampling approach
using sFlow protocol. This is more scalable and efficient;
moreover, it does neither overload the OF channel nor
consume bandwidth between control plane and data plane.

FSC performs flow aggregation which makes it more adequate
to detect high rate DNS amplification attack. In FSC, at each
monitoring interval ∆T , the sFlow collector (i.e., sFlow-RT)
receives network traffic features from sFlow agents embedded
in data plane (i.e., OF switches). Then, ECS computes the
entropy values of network traffic. Table 1 shows the list of
notations used to describe ECS. In this work, we define a
flow as a seven tuple: {MACsrc, MACdst, IPsrc, IPdst,
Portsrc, Portdst = 53, Proto = UDP}

TABLE I: Notations.

Notations Definition

MACsrc The source MAC address of a packet

MACdst The destination MAC address of a packet

IPsrc The source IP address of a packet
IPdst The destination IP address of a packet
Portsrc The UDP source Port of a packet

Portdst The UDP destination Port of a packet

IPproto The transport protocol of a packet (UDP)
Sj OF switch Sj

∆T The monitoring interval
Fi,j Flow fi at a local OF switch Sj

pi,j The probability of flow fi over all flows at local OF
switch Sj

N The total number of flows at local OF switch Sj

R Set of real numbers
I Set of positive integers

2) ECS: The concept behind ECS comes from Shannon’s
information theory [44]. ECS is used to extract network traffic
features and calculates entropy values of each flow. When the
victim’s network is under attack, the number of packets for
a given flow that have the same source IP address, denoted
IPsrc, will sharply increase causing a more concentrated
distribution of source IP address; while normal state leads to
a more dispersed probability distribution of source IP address.
The higher entropy values, the more dispersed probability
distribution of the source IP address, while low entropy values
means the concentration of distribution of source IP address. If
the source sends similar requests (e.g., requests from the same
source IP address IPsrc), then its entropy will be low; this
means that we are very likely in the presence of illegitimate
flow. Therefore, we use ECS to measure the changes of
network traffic. A flow is characterized by a sequence of
packets that have similar properties reaching the same OF
switch Sj during each monitoring interval ∆T .

Let Fi,j denotes flow fi at local OF switch Sj ; it is defined
as follows:

Fi,j(IPsrci , Sj) = {< IPsrci , Sj , t > |Sj ∈ S, i, j ∈ I, t ∈ R}
(1)

where IPsrci is the source IP address of fi, t is the current
timestamp, and S = {Sj , j ∈ I} are the set of OF switches.

Let |Fi,j(IPsrci , Sj , t)| be the count number of packets of
flow Fi,j at time t. The variation of the number of packets
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for flow fi at local OF switch Sj during ∆T is defined as
follows:
NFi,j

(IPsrci , Sj , t + ∆T ) = |Fi,j(IPsrci , Sj , t

+ ∆T )|−|Fi,j(IPsrci , Sj , t)|
(2)

The probability pi,j of flow fi over all flows at local OF
switch Sj is expressed as follows:

(3)pi,j(IPsrci , Sj) =
NFi,j (IPsrci , Sj , t + ∆T )∑N

i=1 NFi,j

where
∑N

i=1 pi,j(IPsrci , Sj) = 1.

Let IPsrc be the random variable that represents the
number of flows during time interval ∆T . We define the
entropy of flows at local OF switch Sj as follows:

(4)H(IPsrc) = −
N∑
i=1

pi,j(IPsrci , Sj) log2 pi,j(IPsrci , Sj)

Lemma 1: The upper and lower bound of H(IPsrc) are,
respectively, 0 and log2 N (see inequality (5)).

0 ≤ H(IPsrc) ≤ log2 N (5)

Proof: Let f(x) = log2 x, x ≥ 0. f(x) is a monotonically
increasing concave function. Let X be the random variable for
flow distribution at an OF switch. Applying Jensen’s inequality
[33] to f(x), we have Ef(X) ≤ f(EX). Let P (X)

.
=

{p1, p2, ..., pn} be the distribution of flows at the OF switch.
Then, ∀ pi, 0 ≤ pi ≤ 1,

∑N
i=1 pif(xi) ≤ f(

∑N
i=1 pixi), where∑N

i=1 pi = 1. Especially H(IPsrc) =
∑N

i=1 pi log2( 1
pi

) ≤
log2(

∑N
i=1 pi

1
pi

) = log2 N . Then, H(IPsrc) ≤ log2 N . Since
log2

1
pi
≥ 0,∀ pi, 0 ≤ pi ≤ 1. Then, H(IPsrc) ≥ 0, and

further Eq.5 holds.

In order to normalize the entropy values, to have a measure-
ment metric which is totally independent from the number of
distinct entropy values, we divide them by the maximum value
which is log2 N , as is demonstrated in Eq. (5). Therefore, the
normalized entropy values are in [0, 1] and are defined as
follows:

H(IPsrc)
′ =

H(IPsrc)

log2 N
(6)

Lemma 2: When the network is under DNS amplification
attack, the upper bound of entropy variation at local OF switch
Sj decreases sharply in comparison to the normal, non-attack,
case.

Proof: As we proved in Eq. (5), the entropy of flows
reaches the upper bound, log2 N , when the probability dis-
tribution of source IP address is almost even. The variation
number of packets for each flow fi is almost stable, specif-
ically, p1 = p2 = p3 = ... = pN , and it reaches the lower
bound, H(IPsrc) = 0, when the probability distribution of
source IP address is almost uneven. Especially, pi = 1, 0 ≤
i ≤ N, pk = 0,∀0 ≤ k ≤ N, k 6= i. As the entropy is a

monotonic function [44]; therefore, when the victim’s network
is under DNS amplification attack, the distribution of source IP
address moves toward the extreme unbalanced point. As result,
the upper bound of the entropy variation decreases sharply.

Theorem 1: We divide the state of the network into
two segments: normal state (i.e., non-attack), and under
DNS amplification attack. We denote Hleg(IPsrc) and
Hilleg(IPsrc) as, respectively, the entropy value of each
flow at local OF switch Sj in normal state and under attack.
When the attacker starts an attack towards a specific victim
(i.e., target of DNS amplification attack), the number of
packets that have the same IPsrc will increase quickly,
which leads to a significant decrease of entropy, especially,
Hleg(IPsrc) � Hilleg(IPsrc). High entropy values lead
to a dispersed probability distribution of flows, whilst low
entropy values indicate a concentrated probability distribution.

Proof: Let Ω(x) = x log2 x, x ≥ 0. Ω(x) is a monotoni-
cally increasing convex function. Let X be the random variable
for flow distribution at an OF switch Sj . Applying Jensen’s
inequality to Ω(x), we have EΩ(X) ≥ Ω(EX). Let Ψ(X)

.
=

{Ψ1,Ψ2, ...,Ψn} be the distribution of flows at an OF switch
Sj , Ψleg(X leg)

.
= {Ψleg

1 ,Ψleg
2 , ...,Ψleg

n } be the distribution of
normal case and Ψilleg(Xilleg)

.
= {Ψilleg

1 ,Ψilleg
2 , ...,Ψilleg

n }
be the distribution of attack case. As the network is sta-
ble in the normal case; therefore, Hleg(IPsrc) is also sta-
ble. Then, ∀i, 0 ≤ i ≤ N , Ψleg

i � Ψilleg
i . More,

EX leg � EXilleg and Ω(EX leg) � Ω(EXilleg). There-
fore, E(Ω(X leg)) � E(Ω(Xilleg)). Hence, we have:
−
∑N

i=1 Ψleg
i log2 Ψleg

i � −
∑N

i=1 Ψilleg
i log2 Ψilleg

i . Finally,
the result is Hleg(IPsrc)� Hilleg(IPsrc).

The attribute (i.e., header fields of the packet) used to
aggregate incoming flows at a local OF switch Sj depends
on the scenario of the attack under consideration (e.g., DNS
amplification attack). For example, many attackers sends mul-
tiple illegitimate DNS requests from the same UDP port source
with the same DNS request type (e.g., ANY ), as legitimate
machines send legitimate DNS requests from random UDP
port source with different DNS request types (e.g., A, MX,
NS, etc.). Consequently, we use {IPsrc, Portsrc and ANY }
as attributes to aggregate DNS flows. Similarly, we can also
define the UDP port source entropy, H(Portsrc)

′ and ANY
entropy, H(ANY )′. Finally, we represent the network traffic
features at the kth time period as:

Xk = {H(IPsrc)
′
k, H(Portsrc)

′
k, H(ANY )

′
k} (7)

3) BNF: BNF aims to detect illegitimate DNS requests that
overload the network and may exhaust TCAM in OF switches.
First, we describe the flow representation. Then, we discuss
BNF criterion of classification.

a) Flow representation: We represent each sample in
BNF by a vector x = (x1, x2, x3) where x1, x2, x3 are
values taken, respectively, by random variables H(IPsrc)

′,
H(Portsrc)

′ and H(ANY )′. When the network suffers from
DNS amplification attack, the number of DNS requests sent
from the same IPsrc, with the same type (e.g., ANY ) and
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from the same Portsrc, will increase sharply. This leads
to a significant decrease of entropy values of, respectively,
H(IPsrc)

′, H(Portsrc)
′ and H(ANY )′. Therefore, the vec-

tor Xk can better represent the DNS amplification attack
characteristics.

b) Criterion of classification: BNF is a binary classifier
that consider two classes of DNS requests: (1) legitimate DNS
requests, denoted by leg, and (2) illegitimate DNS requests,
denoted by illeg. The class of Xk, denoted by c, can be either
leg or illeg and is defined as follows:

c = arg max
c∈{leg,illeg}

p(c|Xk)

Since p(leg|Xk) + p(illeg|Xk) = 1; thus, the selection
criterion becomes:

Xk is illegitimate iff p(illeg|Xk) ≥ 0.5 (8)

According to Bayes theorem [45], the probability of vector
Xk to belong to class c is defined as follows:

p(C = c|X = Xk) =
p(C = c).p(X = Xk|C = c)

p(X = Xk)
(9)

Using the total probability theorem, we conclude:

p(C = c|X = Xk) =

p(C = c).p(X = Xk|C = c)∑
c∈{leg,illeg} p(C = c)p(X = Xk|C = c)

(10)

Therefore, the selection criterion can be expressed as fol-
lows:
Xkis illegitimate iff:

p(C = c|X = Xk) =

p(C = c).p(X = Xk|C = c)∑
c∈{leg,illeg} p(C = c)p(X = Xk|C = c)

≥ 0.5

(11)

H(IPsrc)
′, H(Portsrc)

′ and H(ANY )′ are conditionally
independent variables given class c. Let pk(leg) and pk(illeg)
denote, respectively, the conditional probabilities that vector
Xk is legitimate and illegitimate.

Using Eq. (11), the selection criterion becomes,
Xk is illegitimate iff:∏n

k=1
p
Xk
k

(illeg)(1−pk(illeg))1−Xkp(illeg)∏n

k=1
p
Xk
k

(illeg)(1−pk(illeg))1−Xkp(illeg)+
∏n

k=1
p
Xk
k

(leg)(1−pk(leg))1−Xkp(leg)
≥ 0.5

(12)

When p(leg) = p(illeg), the selection criterion becomes,
Xkis illegitimate iff:

∏n

k=1
p
Xk
k

(illeg)(1−pk(illeg))1−Xk∏n

k=1
p
Xk
k

(illeg)(1−pk(illeg))1−Xk+
∏n

k=1
p
Xk
k

(leg)(1−pk(leg))1−Xk
≥ 0.5

(13)

BNF is trained and then used to classify the kth vector
Xk as either legitimate or illegitimate. By combining ECS
and BNF, WisdomSDN can accurately detect illegitimate DNS
requests in real time with low false positive rate while main-
taining a high detection rate (see Section VIII).

4) Machine Learning DDoS Detection Algorithm: After
having explained our machine learning DDoS detection Mod-
ule, in this section we summarize this calculation via an
algorithm (Algorithm 2). This algorithm is implemented on
the top of the SDN controller as a REST application and
allows, using sFlow protocol, the monitoring of each incoming
flow; it defines some monitoring metrics (e.g., address groups,
attributes of flows aggregation, and thresholds) and commands
the sFlow collector to deploy these monitoring metrics within
the data plane using sFlow protocol. Using the collected data,
the algorithm detects illegitimate flows.

Algorithm 2 Machine Learning DDoS Detection Algorithm.
Input : Aggregated DNS requests from OF Ingress port
Output: legitimate or illegitimate
1. Define address groups, the attribute to aggregate flows
denoted as att (i.e., IPsrc, Portsrc, ANY ) and initialize the
monitoring interval ∆T .
2. Identify flow fi, ∀ 0 ≤ i ≤ N , and set the count number
of packets for each flow fi to zero.
3. When the monitoring interval ∆T is over, the entropy
values are calculated as follows:
for each flow fi at a local OF switch Sj do

NFi,j
(atti, Sj , t + ∆T ) = |Fi,j(atti, Sj , t

+ ∆T )|−|Fi,j(atti, Sj , t)|

end
for i ←1 to N do

pi,j(atti, Sj) =
NFi,j

(atti,Sj ,t+∆T )∑N

i=1
NFi,j

H(IPsrc)+ = −pi,j(IPsrci , Sj) log2 pi,j(IPsrci , Sj)

H(Portsrc)+ = −pi,j(Portsrci , Sj) log2 pi,j(Portsrci , Sj)

H(ANY )+ = −pi,j(ANY i, Sj) log2 pi,j(ANYi, Sj)

end
4. Calculate the normalized entropy values as follows:

H(IPsrc)
′ = H(IPsrc)

log2 N

H(Portsrc)
′ = H(Portsrc)

log2 N

H(ANY )′ = H(ANY )
log2 N

5. Calculate the network traffic features at the kth time period
as:

Xk = {H(IPsrc)
′
k, H(Portsrc)

′
k, H(ANY )

′
k}

6. if p(illeg |Xk) ≥ 0.5 then
notifies DM
Go to step 2

else
Go to step 2

end

VII. DNS MITIGATION (DM) SCHEME

When BNF detects illegitimate DNS requests (i.e., illegiti-
mate traffic features vector Xk), a mitigation rule is executed
in order to protect TCAM of OF switches. DM installs new
OF rules into OF switches under DNS amplification attack;
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these rules have a high priority to match illegitimate flows and
monitor their speed. OF protocol was designed without any
support to QoS features; however, OF 1.3 introduces meters
[46] to OF. DM specifies for each flow entry in OF table a
meter; meter entries with different Meter_id are deployed to
monitor the speed of the classified illegitimate traffic features
vector Xk by BNF; if the packet rate surpasses the band (i.e.,
rate limiter); then, DM systematically drops the illegitimate
DNS requests.

VIII. EVALUATION OF WISDOMSDN
In this section, we present the evaluation of WisdomSDN.

First, we introduce the experimental environment. Then, we
evaluate the performance of WisdomSDN.

A. Experimental Environment

PAS is implemented in OF switch (i.e., OpenvSwitch); while
Machine Learning DDoS Detection Module (i.e., FSC, ECS
and BNF) and DM are implemented as applications on the
top of the SDN controller. PAS systematically blocks amplified
illegitimate DNS responses. Using FSC, ECS extracts network
traffic features; then, BNF detects automatically illegitimate
DNS requests. Finally, DM mitigates the illegitimate DNS
requests. In order to emulate a real network environment,
we use Mininet, a popular SDN emulation tool. Mininet uses
Linux containers and virtual OF switches (e.g., OpenvSwitch)
to allow realistic virtual networks of switches and hosts to
be constructed using a virtual machine (VM). In our testing
environment, the network monitor (i.e., sFlow-RT) and the
SDN controller (i.e., Floodlight) are installed on the host-
system. We run our experiments on a PC with CPU Intel Core
i7-8750H-2.2 GHz and 16GB RAM.

Fig. 6 shows the experimental environment (i.e., compo-
nents of the testbed); it consists of: (a) SDN controller (i.e.,
Floodlight); (b) sFlow collector (i.e., sFlow-RT): to perform
the monitoring of network traffic features (sFlow-RT can per-
form monitoring of 7500 switch ports in data center networks);
(c) REST applications: it executes FSC, ECS, BNF and DM;
and (d) 6 OF switches, that are connected together via 1
Gbps links. Each OF network contains more than 20 hosts;
multiple hosts in our setup topology are simulated to act as
Open Resolvers and send amplified DNS responses ( we tested
several attacks setup: when the attacker is external (see Figs.
4(a) and 4(b)), and then when it is internal (see Fig. 4(c) and
4(d)) and other hosts are legitimate hosts. In order to test the
scalability of WisdomSDN, we varied the rate of attack from
100 to 500 Mbps. Table 2 shows the parameter values for our
experimentations.

TABLE II: Parameter values.

Average traffic
rate (Mbps)

Sampling
rate

Attack
rate(pkts/s)

Exp.1 100 1/64 200-500
Exp.2 500 1/256 1000-2500

For the attack script, Scapy’s Python library [47] module of
Python that makes easy to forge, send, receive and manipulate

network packets, is used to forge DNS request. NodeJs [48]
is used to create the DNS server using dnsd package; in order
to emulate a real DNS amplification attack, the DNS server is
implemented to send amplified DNS responses. Tcpdump [49],
Wireshark [50] and Iperf [51] are used to capture and analyzes
the network traffic in real-time. For each scenario presented
in Figs. 4 and 5, we tested several cases of attacks and
made test measurements considering both cases: (1) without
wisdomSDN; and (2) with wisdomSDN.

Fig. 6: Experimental Environment.

Fig. 7(a) shows that, without wisdomSDN, the victim (host
h2) is flooded by amplified illegitimate DNS responses.

(a)

(b)

Fig. 7: Capture on victim’s network without and with wis-
domSDN.

After deploying WisdomSDN, we re-launched the attack.
Fig. 7(b) shows that, the victim does not receive any amplified
illegitimate DNS responses.

Figs. 8(a) and 8(b) show the protection of the victim’s
bandwidth resources and OF channel by WisdomSDN. Fig.
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(a) (b)

Fig. 8: Performance evaluation of WisdomSDN in terms of: a) bandwidth consumption; b) OF channel workload.

8(a) shows the victim’s bandwidth resources consumption
with and without WisdomSDN. Without WisdomSDN, with
the increase of attack rate, the victim’s network bandwidth
consumption decreases sharply (victim’s network bandwidth
goes to zero when the attack rate reaches 2000 packets per
second (pps)). With WisdomSDN, the SDN controller set flow
rules to OF switch (see Algorithm 1) to process proactively
DNS packets and to: (1) systematically drop the amplified
DNS responses; (2) perform one-to-one mapping between
DNS requests and DNS responses; and (3) send each DNS
response according to the original port, if the source IP address
of DNS request has been spoofed, the attacker will receive the
illegitimate DNS response. Thus, the victim is totally protected
and his network bandwidth is not used by the traffic generated
by the attack (12Mbps of available bandwidth) even if the
attack rate reaches 2000 pps. PAS not only saves the victim’s
network bandwidth, but also reduces the load of OF channel.
Fig. 8(b) shows OF channel’s workload variations with and
without WisdomSDN. Without WisdomSDN, with the increase
of attack rate, the load of OF channel increases sharply. With
WisdomSDN, we use a proactive mechanism (i.e., PAS) and
not a reactive one. In PAS, each OF switch makes filtering
of illegitimate DNS responses from all DNS traffic without
sending amplified traffic to SDN controller. Thus, saving the
load of OF channel.

Fig. 9 shows that, without WisdomSDN, the attack rate
reaches more than 2000 DNS requests per second. Thus, even
if the victim is protected using PAS, the OF switch can be
overwhelmed. This occurs when the attacker is within the
network of the victim and tries to overwhelm TCAM of OF
switches with a large number of illegitimate DNS requests.
However, when our machine Learning DDoS detection module
is deployed, the traffic, generated by the attack. is effectively
monitored using FSC; when ECS and BNF classify the flow
as illegitimate, it is stopped and DM automatically mitigates
the traffic attack (rate limit).

Fig. 10 shows that the time taken to mitigate the attacks
is less than 13 seconds. Thus, we can effectively and quickly
recover the network in short time.

To examine the effectiveness of ECS, we set a simulation

Fig. 9: DNS request’s traffic before and after enabling Wis-
domSDN.

Fig. 10: Time of DM mitigation.

interval of 250s; then, we launch the attack during the interval
of 150−200s. Figs. 11(a), 11(b) and 11(c) show, respectively,
the normalized entropy values of IP source address, UDP port
source and ANY. These normalized entropy values decreases
rapidly in the interval of attack 150 − 200s. Thus, ECS can
better represents the attack and indicates that we are very likely
in the presence of illegitimate flow. Therefore, BNF can detect
the attack with high detection rate and low false positive rate.

B. Performance Evaluation

The performance of BNF is measured using ROC curves.
The ROC curve shows the True Positive Rate (TPR) called
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(a) (b) (c)

Fig. 11: Normalized entropy values of: a) source IP address (IPsrc); b) UDP port Source (Portsrc); and c) ANY DNS
requests.

(a) (b)

Fig. 12: ROC curves for the: a) 100 Mbps case; b) 500 Mbps case.

sensitivity or Detection Rate (DR) according to the False
Positive Rate (FPR). To evaluate the detection rate of BNF in
high traffic rate, we conducted two experiments (i.e., 100Mbps
and 500Mbps) and we compared BNF in terms of detection
rate and FPR with ChainSecure [31] and FlowEntropy [38].
To measure the performance of BNF, we use confusion matrix
(see Table 3); it provides several metrics that can help to study
the performance of BNF. We also define DR and FPR as
follows:

TABLE III: Confusion matrix.

Classified as illegiti-
mate

Classified as legitimate

illegitimate
flows

TP (True Positives) FN (False Negatives)

legitimate
flows

FP (False Positives) TN (True Negatives)

Se = DR =
TP

TP + FN
, 1− Sp = FPR =

FP

TN + FP

where, TP represent the illegitimate flows that are correctly
classified as illegitimate, FN represent the illegitimate flows
that are identified as legitimate, FP represent the legitimate

flows that are classified as illegitimate, and TN represent the
legitimate flows that are correctly identified as legitimate.
Fig. 12(a) shows that WisdomSDN achieves around 100%
detection rate for 100Mbps case while it has just 23% of
FPR, while [31] and [38] achieve the same detection rate but
with respectively 31% and 40% of FPR. Fig. 12(b) shows
that WisdomSDN achieves around 100% detection rate for 500
Mbps case while it has just 21% of FPR, while [31] and [38]
achieve the same detection rate but with respectively 30% and
34% of FPR.

IX. CONCLUSION

SDN is an emerging technology that brings numerous
benefits by decoupling the control plane from data plane. On
one hand, the separation of the control plane from the data
plane allows for more control over the network and brings
new capabilities to deal with large forms of DDoS attacks.
On the other hand, this separation introduces new challenges
regarding the security of the control plane. This paper aims
to deal with DNS amplification attack while maintaining
the SDN secure (i.e., protecting the resources of data plane
(i.e., Ternary Content Addressable Memory (TCAM) of OF
switches). For this aim, first, we proposed PAS, a proactive and
stateful scheme that performs a one-to-one mapping between
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DNS request and DNS response in order to: (1) protect the
victim from DNS amplification attack; and (2) protect the
resources of the SDN controller. Then, we proposed a machine
learning DDoS detection module that consists of FSC, ECS
and BNF in order to detect illegitimate DNS requests and
protect TCAM of OF switches. Finally, DM is designed to
mitigate illegitimate DNS requests. In our simulations, we
set a fixed idle and hard timeouts of flow rules. For large
values, flow rules stay in OF table for a long time which can
exhaust TCAM of OF switches, while too small values, may
lead to the dropping of legitimate DNS responses. For future
work, we intend to design a novel optimization algorithms
to set dynamically those timeouts. This optimization can be
based on the capacity of OF table, traffic rate and workload
of both data plane and control plane. Moreover, we aim also
to extend this work considering inter-domain mitigation based
on a decentralized architecture (e.g., Blockchain [52]) ensuring
two levels of mitigation (i.e., intra-domain and inter-domain
DDoS mitigation [53]).
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